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Purpose of this lesson

The objective of this lesson is:

1 provide a background in data fusion in general
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Reading Materials

High Level Data Fusion, by Subrata Das, Artech House, 2008 - 393 pages

Sentz, Kari, and Scott Ferson. Combination of evidence in
Dempster-Shafer theory. Albuquerque, New Mexico: Sandia National
Laboratories, 2002.

Shafer, Glenn. A mathematical theory of evidence. Vol. 1. Princeton:
Princeton university press, 1976.
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Motivation

Representing ignorance

The problem of priors

Symmetric treatment of prior belief & evidence

Representing evidence:
1 Evidential basis
2 Weight of evidence
3 Uncertain evidence
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Introductory Example I

Mr. Jones was assassinated by the Mafia.

Evidence 1
An informer tells the police that the selection of the assassin was done as
follow:
A fair coin is tossed:

1 Head : either Peter or Tom is selected

2 Tail : either Tom or Mary is selected

Evidence 2
The police finds the assassin’s fingerprint. An expert states that it is male
with 80% chance and female with 20% chance.
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Introductory Example II

Using Evidence Theory

Using probabilities
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Uncertainty

Aleatory Uncertainty is the type of uncertainty which results from the fact
that a system can behave in random ways.
also known as: Stochastic uncertainty, Type A uncertainty, Irreducible
uncertainty, Variability, Objective uncertainty.

Epistemic Uncertainty is the type of uncertainty which results from the
lack of knowledge about a system and is a property of the analysts
performing the analysis.
also known as: Subjective uncertainty, Type B uncertainty, Reducible
uncertainty, State of Knowledge uncertainty, Ignorance
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Probability

Laplace’s Principle of Insufficient Reason. A probabilistic analysis requires
that an analyst have information on the probability of all event. When this
is not available, the uniform distribution function is often used.

Axiom of additivity. All probabilities that satisfy specific properties must
add to 1. This forces the conclusion that knowledge of an event necessarily
entails knowledge of the complement of an event, i.e., knowledge of the
probability of the likelihood of the occurrence of an event can be
translated into the knowledge of the likelihood of that event not occurring.
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Beyond Probability

Where it is not possible to characterize uncertainty with a precise measure
such as a precise probability, it is reasonable to consider a measure of
probability as an interval or a set.

1 It is not necessary to elicit a precise measurement from an expert or
an experiment if it is not realistic or feasible to do so.

2 The Principle of Insufficient Reason is not imposed. Statements can
be made about the likelihood of multiple events together without
having to resort to assumptions about the probabilities of the
individual events under ignorance.

3 The axiom of additivity is not imposed. The measures do not have to
add to 1. When the sum is less than 1, called the subadditive case,
this implies an incompatibility between multiple sources of
information, e.g. multiple sensors providing conflicting information.
When the sum is greater than 1, the superadditive case, this implies a
cooperative effect between multiple sources of information.
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Dempster-Shafer Theory

In a finite discrete space, Dempster-Shafer theory can be interpreted as a
generalization of probability theory where probabilities are assigned to sets
as opposed to mutually exclusive singletons. In traditional probability
theory, evidence is associated with only one possible event.
One of the most important features of Dempster-Shafer theory is that the
model is designed to cope with varying levels of precision regarding the
information and no further assumptions are needed to represent the
information.
It also allows for the direct representation of uncertainty of system
responses where an imprecise input can be characterized by a set or an
interval and the resulting output is a set or an interval.
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Evidence

Evidence is a notion which probably can never be fully captured by a
single formal theory. Here, “Evidence Theory”, or “Theory of Evidence”,
will be understood in a narrow sense as the theory introduced by Dempster
and Shafer, and variants thereof.
It is clear today that this theory can be given various different, but
essentially equivalent mathematical forms. Some of them are based on
probability theory, others are axiomatic theories, a priori without a
reference to probabilistic approaches and non-probabilistic ones.
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Frame of Discernment

Define Ω = {ω1, · · · , ωn} as the set of hypotheses that must be considered
as the set of possible value of the variable ω. This set is called frame of
discernment. For example, the possible causes of failures of a critical
infrastructure could be a sabotage, the failure of an appliance, a fault due
to the weather, or, for instance, a cyber attack. In the Theory of Evidence
the hypotheses are assumed to be mutually exclusive.
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Power Set

Starting from the frame of discernment, it is possible to define the power
set as Γ(Ω) = {γ1, · · · , γ2|Ω|}, that has cardinality |Γ(Ω)| = 2|Ω|. This set
contains all possible subsets of Ω, including the empty set γ1 = ∅ and the
universal set γ2|Ω| = Ω.
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Hasse Diagram of Power Set

The Hasse diagram of the power set of three elements, partially ordered by
inclusion.

Γ(Ω) = {∅, {x}, {y}, {z}, {x ∪ y}, {x ∪ z}, {y ∪ z}, {x ∪ y ∪ z}, } (1)
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Basic Belief Assignment

The Trasferable Belief Model (TBM) [?] is based on the definition of a
basic belief mass function: m = Γ(Ω)→ [0; 1.0]. This function is a map
that assigns to each element of the power set a value between 0 and 1.
This function, also called basic belief assignment (BBA), shall respect the
following constraint: ∑

γa⊆Γ(Ω)

m(γa) = 1 with m(∅) = 0 (2)

Each element γa having m(γa) 6= 0 is named focal set.
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Understanding Basic Belief Assignment

In this framework, the interest is focused on quantifying the confidence of
propositions of the form: “The true value of ωi is in γa,” with γa ∈ Γ(Ω).
For γa ∈ Γ(Ω), m(γa) is the part of confidence that support exactly γa.
This means that the true value is in the set γa but, due to lack of further
information, we are not able to better support any strictly subset of γa.
This is not a probability function, and it does not respect the property of
additivity: m(γa ∪ γb) 6= m(γa) + m(γb).
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Example I

Suppose two experts are consulted regarding a system failure. The failure
could be caused by Component A, Component B or Component C.

The first expert believes that the failure is due to Component A with a
probability of 0.99 or Component B with a probability of 0.01.
The second expert believes that the failure is due to Component C with a
probability of 0.99 or Component B with a probability of 0.01.
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Example II

Frame of Discernment

Ω = {A,B,C} (3)

Power Set

Γ(Ω) = {{∅}, {A}, {B}, {C}, {A∪B}, {A∪C}, {B∪C}, {A∪B∪C}, } (4)

Basic Probability Assignment
Expert 1 =⇒ m1

m1(A) = 0.99 (failure due to Component A)
m1(B) = 0.01 (failure due to Component B)
Expert 2 =⇒ m2

m2(B) = 0.01 (failure due to Component B)
m2(C ) = 0.99 (failure due to Component C)
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Belief and Plausibility

From the basic belief assignment, the upper and lower bounds of an
interval can be defined. This interval contains the precise probability of a
set of interest (in the classical sense) and is bounded by two nonadditive
continuous measures called Belief and Plausibility.

The lower bound Belief for a set A is defined as the sum of all the basic
probability assignments of the proper subsets B of the set of interest A,
where B ⊆ A.

Bel(A) =
∑

B,B⊆A
m(B) (5)

The upper bound, Plausibility, is the sum of all the basic probability
assignments of the sets B that intersect the set of interest A, where
B ∩ A 6= ∅.

Pl(A) =
∑

B,B∩A 6=∅

m(B) (6)
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Example I

Evaluate Belief and Plausibility from BPAs:
∅ A B C A ∪ B A ∪ C B ∪ C A ∪ B ∪ C

m1 0.0 0.99 0.01 0.0 0.0 0.0 0.0 0.0

Bel1 0.0 0.99 0.01 0.0 1.0 0.99 0.01 1.0

Pl1 0.0 0.99 0.01 0.0 1.0 0.99 0.01 1.0

m2 0.0 0.0 0.01 0.09 0.0 0.0 0.0 0.0

Bel2 0.0 0.0 0.01 0.09 0.01 0.09 1.0 1.0

Pl2 0.0 0.0 0.01 0.09 0.01 0.09 1.0 1.0
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Inverse Functions I

It is possible to obtain the basic probability assignment from the Belief
measure with the following inverse function:

m(A) =
∑

B,B⊆A
(−1)|A−B|Bel(B) (7)

where |A− B| is the difference of the cardinality of the two sets.
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Inverse Functions II

In addition to deriving these measures from the basic probability
assignment m, these two measures can be derived from each other. For
example, Plausibility can be derived from Belief in the following way:

Pl(A) = 1− Bel(Ā) (8)

where Ā is the classical complement of A.

Bel(Ā) =
∑

B,B⊆Ā

m(B) =
∑

B,B∩A=∅

m(B) (9)
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Dempster’s Rule

The Dempster’s rule of combination is a purely conjunctive operation.
This rule strongly emphasises the agreement between multiple sources and
ignores all the conflicting evidence through a normalisation factor. This
has the effect to attribute null mass to the empty set. So the rule is
formalized as:

Dempster{mi ,mj}(∅) = 0

Dempster{mi ,mj}(γa) =

∑
γb∩γc=γa

mi (γb)mj(γc)

1−
∑

γb∩γc=∅

mi (γb)mj(γc)
∀γa ∈ Γ(Ω)

(10)
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Example I

Continuing the example...
Expert (m1)

m(A) = 0.99 m(B) = 0.01 m(C ) = 0.0

m(A) = 0.0 m1(A)m2(A) m1(B)m2(A) m1(C )m2(A)
= 0.0 = 0.0 = 0.0

m(B) = 0.01 m1(A)m2(B) m1(B)m2(B) m1(C )m2(B)
= 0.0099 = 0.0001 = 0.0

m(C ) = 0.99 m1(A)m2(C ) m1(B)m2(C ) m1(C )m2(C )
= 0.9801 = 0.0099 = 0.0

m(∅) m(A) m(B) m(C )

0.0
0.0

1− 0.9999

0.0001

1− 0.9999

0.0

1− 0.9999
0.0 0.0 1.0 0.0
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Smets’ Rule

Differently, the Smets’ rule of combination allows to express explicitly the
contradiction in the TBM, by letting m(∅) 6= 0. This combination rule,
compared to the Dempster’s one, simply avoids the normalisation while
preserving the commutativity and associativity properties. The
formalization is as follows:

Smets{mi ,mj}(γa) = mi (γa)⊗mj(γa) ∀γa ∈ Γ(Ω) (11)

where

mi (γa)⊗mj(γa) =
∑

γb∩γc=γa

mi (γb)mj(γc) ∀γa ∈ Γ(Ω) (12)
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Conflict

The fact that m(∅) > 0 can be explained in two ways: the open world
assumption and the quantified conflict. The open world assumption, made
by Dempster, reflects the idea that the frame of discernment must contain
the true value. Necessarily, if the open world assumption is true, then the
set of hypotheses must contains all possibilities. Under this interpretation,
being ∅ the complement of Ω, the mass m(∅) > 0 represents the case
where the truth is not contained in Ω. The second interpretation of
m(∅) > 0 is that there is some underlying conflict between the sources
that are combined in order to produce the BBA. Hence, the mass assigned
to m(∅) represents the degree of conflict. In particular, it can be computed
as follows:

mi (∅)⊗mj(∅) = 1−
∑

γa∈Γ,γa 6=∅

(mi (γa)⊗mj(γa)) (13)
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Example I

Continuing the example...
Expert (m1)

m(A) = 0.99 m(B) = 0.01 m(C ) = 0.0

m(A) = 0.0 m1(A)m2(A) m1(B)m2(A) m1(C )m2(A)
= 0.0 = 0.0 = 0.0

m(B) = 0.01 m1(A)m2(B) m1(B)m2(B) m1(C )m2(B)
= 0.0099 = 0.0001 = 0.0

m(C ) = 0.99 m1(A)m2(C ) m1(B)m2(C ) m1(C )m2(C )
= 0.9801 = 0.0099 = 0.0

m(∅) m(A) m(B) m(C )

0.9999 0.0 0.0001 0.0
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Decisions I

according to Smets’ “Transferable Belief Model” (TBM)

There is a credal level where beliefs are entertained and a pignistic
level where beliefs are used to make decisions (from pignus = bet in
Latin

At the credal level beliefs are quantified by belief functions

The credal level precedes the pignistic level in that at any time, belief
are entertained and updated at the credal level. The pignistic level
appears only when a decision needs to be made

When decision must be made, beliefs at the credal level induce a
probability measure at the pignistic level, i.e., there is a pignistic
transformation from belief functions to probability functions.
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Decisions II

Pignistic Transformation

BetP(γa) =
∑

γb⊆Γ(Ω)

|γa ∩ γb|
|γb|

m(γb)

1−m(∅)
(14)

BetP(γa) =
∑

γb⊆Γ(Ω)

|γa ∩ γb|
|γb|

m(γb) (15)

where |γa| denotes the number of worlds in the set
γa.
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Example

Continuing the example...

Does Pignistic Transformation differ from Basic Probability Assignment?

Why?
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Criticism

The need to evaluate the Power Set

How can we assign the BBA?
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Closed World Assumption

An issue is related to the assumption made in Dempster-Shafer framework:
the closed world assumption. According to such an hypothesis, the
considered situations have to be exhaustive and mutually exclusive.
Smets, with the TBM approach, overcomes this limit including the
possibility that empty set may have a non-zero mass; in this way it is
possible to determine to which extent the estimation is contradictory. The
event of an empty-set with non-zero mass may happen when several
combined sources are in conflict, or when the frame of discernment Ω does
not contain all possible situations, thus highlighting modeling errors and
that the truth is not in Ω.
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Exclusivity of Hypotheses

In the Dezert-Smarandache (DSmT) framework, one starts with a frame
consisting only in a finite set of exhaustive hypotheses. This is the
so-called free DSm model. The exclusivity assumption between elements
(i.e. requirement for a refinement) of Θ is not necessary within DSmT.
However, in DSmT any integrity constraints between elements of Θ can
also be introduced, if necessary, depending on the fusion problem under
consideration.

C. Foglietta (Distributed Control of Large Facilities) Evidence Theory March, 2013 34 / 42



Knowledge Model

X1	  

X2	  

X3	  

H1	  

H2	  

H3	  

H4	  

SCADA 
Alarm 

TLC Alarm 

Power Grid 
Alarm 
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Hypotheses

The set of evidences is [X 1,X 2,X 3]. Evidence Theory can help finding
the most probable cause generating faults. The frame of discernment is
composed of the following four hypotheses:

1 (H1) power grid failure;

2 (H2) transportation infrastructure failure;

3 (H3) cyber attack to telecommunication systems;

4 (H4) telecommunication network failure.
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Basic Belief Assignment

For each spurious alarm j generated from the field and received by the
control center, we considered the supporting subset Ψj , as the sub-set
containing all the causes which have an outgoing edge that goes into the
j-th failure node. At this subset Ψj , it has been assigned a mass α equal
to the reliability of the sensor generating the alarm; and 1− α to the
universal set {H1,H2,H3,H4}, as the set representing the maximum
ignorance. In this paper, reliability values are pre-fixed values and never
change during simulation. For reliability we means the probability that the
alarm is a real alarm and not a false one.
The reliability value for each alarm is, respectively, α for X1, β as
reliability value for sensor X2, and γ for sensor X3. The alarm X1 supports
the subset {H1,H2,H3}; X2 alarm supports the subset {H3,H4} and X3
supports {H1,H2}, as depicted in Figure ??.
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Right Behaviour I

T0: v = [α, β, 0]
T1: v = [α, β, 0]
T2: v = [α, 0, 0]
T3: v = [α, 0, 0]
where alpha = 0.6 and β = 0.9.
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Right Behaviour II

T0 T1 T2 T3
{∅} 0 0 0 0
{H1} 0 0 0 0
{H2} 0 0 0 0
{H3} 0.54 0.8316 0.9266 0.9647
{H4} 0 0 0 0
{H1,H2} 0 0 0 0
{H1,H3} 0 0 0 0
{H1,H4} 0 0 0 0
{H2,H3} 0 0 0 0
{H2,H4} 0 0 0 0
{H3,H4} 0.36 0.1584 0.0634 0.0253
{H1,H2,H3} 0.06 0.0084 0.0094 0.0097
{H1,H2,H4} 0 0 0 0
{H1,H3,H4} 0 0 0 0
{H2,H3,H4} 0 0 0 0
{H1,H2,H3,H4} 0.04 0.0016 0.0006 0.0003
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Wrong Behaviour I

T0: v = [α, β, 0]

T1: v = [α, β, 0]

T2: v = [α, 0, 0]

T3: v = [α, 0, 0]

T4: v = [0, 0, γ]

T5: v = [0, 0, γ]

where alpha = 0.6 and β = 0.9 and γ = 0.7.
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Wrong Behaviour II

T0 T1 T2 T3 T4 T5
{∅} 0 0 0 0 0.693 0.9009
{H1} 0 0 0 0 0 0
{H2} 0 0 0 0 0 0
{H3} 0.54 0.8316 0.9266 0.9647 0.2894 0.0868
{H4} 0 0 0 0 0 0
{H1,H2} 0 0 0 0 0.007 0.0091
{H1,H3} 0 0 0 0 0 0
{H1,H4} 0 0 0 0 0 0
{H2,H3} 0 0 0 0 0 0
{H2,H4} 0 0 0 0 0 0
{H3,H4} 0.36 0.1584 0.0634 0.0253 0.0076 0.0023
{H1,H2,H3} 0.06 0.0084 0.0094 0.0097 0.0029 0.0009
{H1,H2,H4} 0 0 0 0 0 0
{H1,H3,H4} 0 0 0 0 0 0
{H2,H3,H4} 0 0 0 0 0 0
{H1,H2,H3,H4} 0.04 0.0016 0.0006 0.0003 0.0001 0.0000
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The End
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